Hive 视图和索引
一、视图
1.1 简介
Hive 中的视图和 RDBMS 中视图的概念一致,都是一组数据的逻辑表示,本质上就是一条 SELECT 语句的结果集。视图是纯粹的逻辑对象,没有关联的存储 (Hive 3.0.0 引入的物化视图除外),当查询引用视图时,Hive 可以将视图的定义与查询结合起来,例如将查询中的过滤器推送到视图中。
1.2 创建视图
在 Hive 中可以使用 CREATE VIEW
创建视图,如果已存在具有相同名称的表或视图,则会抛出异常,建议使用 IF NOT EXISTS
预做判断。在使用视图时候需要注意以下事项:
视图是只读的,不能用作 LOAD / INSERT / ALTER 的目标;
在创建视图时候视图就已经固定,对基表的后续更改(如添加列)将不会反映在视图;
删除基表并不会删除视图,需要手动删除视图;
视图可能包含 ORDER BY 和 LIMIT 子句。如果引用视图的查询语句也包含这类子句,其执行优先级低于视图对应字句。例如,视图
custom_view
指定 LIMIT 5,查询语句为select * from custom_view LIMIT 10
,此时结果最多返回 5 行。创建视图时,如果未提供列名,则将从 SELECT 语句中自动派生列名;
1.3 查看视图
1.4 删除视图
删除视图时,如果被删除的视图被其他视图所引用,这时候程序不会发出警告,但是引用该视图其他视图已经失效,需要进行重建或者删除。
1.5 修改视图
被更改的视图必须存在,且视图不能具有分区,如果视图具有分区,则修改失败。
1.6 修改视图属性
二、索引
Hive 会从 3.0 开始移除索引功能
2.1 简介
Hive 在 0.7.0 引入了索引的功能,索引的设计目标是提高表某些列的查询速度。如果没有索引,带有谓词的查询(如'WHERE table1.column = 10')会加载整个表或分区并处理所有行。但是如果 column 存在索引,则只需要加载和处理文件的一部分。
2.2 索引原理
在指定列上建立索引,会产生一张索引表(表结构如下),里面的字段包括:索引列的值、该值对应的 HDFS 文件路径、该值在文件中的偏移量。在查询涉及到索引字段时,首先到索引表查找索引列值对应的 HDFS 文件路径及偏移量,这样就避免了全表扫描。
2.3 创建索引
Hive中支持的索引类型包括BINARY、BITMAP、COMPACT、GLOBAL和LOCAL。不同类型的索引适用于不同类型的查询和表格大小。
BINARY索引适用于二进制数据类型
BITMAP索引适用于高基数列
COMPACT索引适用于低基数列
GLOBAL索引适用于跨多个分区的查询
LOCAL索引适用于单个分区的查询。
2.4 查看索引
2.4 删除索引
删除索引会删除对应的索引表
如果存在索引的表被删除了,其对应的索引和索引表都会被删除。如果被索引表的某个分区被删除了,那么分区对应的分区索引也会被删除。
2.5 重建索引
三、索引案例
3.1 创建索引
在 emp 表上针对 empno
字段创建名为 emp_index
,索引数据存储在 emp_index_table
索引表中
此时索引表中是没有数据的,需要重建索引才会有索引的数据。
3.2 重建索引
3.3 自动使用索引
默认情况下,虽然建立了索引,但是 Hive 在查询时候是不会自动去使用索引的,需要开启相关配置。开启配置后,涉及到索引列的查询就会使用索引功能去优化查询。
3.4 查看索引
四、索引的缺陷
索引表最主要的一个缺陷在于:索引表无法自动 rebuild,这也就意味着如果表中有数据新增或删除,则必须手动 rebuild,重新执行 MapReduce 作业,生成索引表数据。
同时按照官方文档 的说明,Hive 会从 3.0 开始移除索引功能,主要基于以下两个原因:
具有自动重写的物化视图 (Materialized View) 可以产生与索引相似的效果(Hive 2.3.0 增加了对物化视图的支持,在 3.0 之后正式引入)。
使用列式存储文件格式(Parquet,ORC)进行存储时,这些格式支持选择性扫描,可以跳过不需要的文件或块。
Last updated