Hive分区表和分桶表
一、分区表
1.1 概念
Hive 中的表对应为 HDFS 上的指定目录,在查询数据时候,默认会对全表进行扫描,这样时间和性能的消耗都非常大。
分区为 HDFS 上表目录的子目录,数据按照分区存储在子目录中。如果查询的 where
字句的中包含分区条件,则直接从该分区去查找,而不是扫描整个表目录,合理的分区设计可以极大提高查询速度和性能。
1.2 使用场景
通常,在管理大规模数据集的时候都需要进行分区,比如将日志文件按天进行分区,从而保证数据细粒度的划分,使得查询性能得到提升。
1.3 创建分区表
在 Hive 中可以使用 PARTITIONED BY
子句创建分区表。表可以包含一个或多个分区列,程序会为分区列中的每个不同值组合创建单独的数据目录。下面的我们创建一张雇员表作为例子:
1.4 加载数据到分区表
加载数据到分区表时候必须要指定数据所处的分区:
1.5 查看分区目录
这时候我们直接查看表目录,可以看到表目录下存在两个子目录,分别是 deptno=20
和 deptno=30
,这就是分区目录,分区目录下才是我们加载的数据文件。
这时候当你的查询语句的 where
包含 deptno=20
,则就去对应的分区目录下进行查找,而不用扫描全表。
二、分桶表
1.1 简介
分区提供了一个隔离数据和优化查询的可行方案,但是并非所有的数据集都可以形成合理的分区,分区的数量也不是越多越好,过多的分区条件可能会导致很多分区上没有数据。同时 Hive 会限制动态分区可以创建的最大分区数,用来避免过多分区文件对文件系统产生负担。鉴于以上原因,Hive 还提供了一种更加细粒度的数据拆分方案:分桶表 (bucket Table)。
分桶表会将指定列的值进行哈希散列,并对 bucket(桶数量)取余,然后存储到对应的 bucket(桶)中。
哈希散列是一种将任意长度的数据映射为固定长度散列值的技术。
1.2 创建分桶表
在 Hive 中,我们可以通过 CLUSTERED BY
指定分桶列,并通过 SORTED BY
指定桶中数据的排序参考列。下面为分桶表建表语句示例:
1.3 加载数据到分桶表
直接使用 Load
语句向分桶表加载数据,数据时可以加载成功的,但是数据并不会分桶。
这是由于分桶的实质是对指定字段做了 hash 散列然后存放到对应文件中,这意味着向分桶表中插入数据是必然要通过 MapReduce,且 Reducer 的数量必须等于分桶的数量。由于以上原因,分桶表的数据通常只能使用 CTAS(CREATE TABLE AS SELECT) 方式插入,因为 CTAS 操作会触发 MapReduce。但是也可以使用 INSERT INTO 语句来插入数据,只要设置 hive.enforce.bucketing
为 true。加载数据步骤如下:
1.5 查看分桶文件
bucket(桶) 本质上就是表目录下的具体文件:
三、分区表和分桶表结合使用
分区表和分桶表的本质都是将数据按照不同粒度进行拆分,从而使得在查询时候不必扫描全表,只需要扫描对应的分区或分桶,从而提升查询效率。两者可以结合起来使用,从而保证表数据在不同粒度上都能得到合理的拆分。下面是 Hive 官方给出的示例:
此时导入数据时需要指定分区:
Last updated